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1. Introduction. This paper considers the solution of a large scale entropy maximization
problem motivated by a pharmacokinetic application to optimal drug therapy. A newly devel-
oped “Multiple Model (MM)” method [1] of individualized drug therapy for patients is based on
a control paradigm that uses a discrete joint density such as that given by a nonparametric popu-
lation pharmacokinetic model. The model’s parameter values are assumed to lie in a discrete set
of support points that is initially defined from nonparametric population studies that take into
consideration such factors as the individual’s age, sex, height, weight, renal function, past dosage,
and serum concentrations. The dosage regimen to optimally achieve the desired goal is developed
as a function of the entire probability joint density of the parameters. As the patient receives
the regimen, the entire distribution can then be adjusted based on feedback measurements (serum
levels).

The MM control process is thus initialized with the selection of a discrete prior distribution.
There are several methods for obtaining this prior, including parametric, semi-parametric and
nonparametric population modeling approaches [2-5]. Of these, only the maximum likelihood
nonparametric approaches in [4,5] develop the discrete probability distributions required by the
multiple model control paradigm. In the event that a parametric or continuous prior is initially
provided, it must first be converted into a discrete distribution that approximates the original
continuous distribution in some fashion. This is necessary when one wishes to use the MM dosage
paradigm on a well-known and useful parametric population model, where the original data has
been lost or is not available for nonparametric modeling.

To perform the conversion from a continuous to a discrete distribution, we have taken the
approach described below, based on replacing the given distribution with one that shares some of
the characteristics of the original one. Specifically, a subset of the moment data can be matched,
typically means and variances of the underlying random variables. This can be accomplished
in the most “noninformative” or skeptical way, by finding the distribution having the maximum
entropy that satisfies the moment constraints. Maximum entropy is a method for obtaining the
most probable distribution, in a combinatorial sense, that fits the moment data. The concept of
entropy arises in many diverse contexts including statistical mechanics [6], information theory [7],
and various estimation problems [8].

The mathematical formulation of this optimization problem falls into the general class of
convex optimization. The objective functional (the entropy function) is convex, while the moment
constraints are linear. The focus of this paper is on developing algorithms to solve this optimization
problem, and then using example data, demonstrating their use. A brief summary of the paper
follows.

In Section 2 the maximum entropy moment matching problem with equality constraints is
introduced. The dual problem is developed, and is shown to be an unconstrained convex program-
ming problem. The important feature of the dual problem is that the number of dual variables is
typically significantly less than the number of primal variables. The solutions to both the primal
and dual problems are shown to exist and to be unique when the primal problem is feasible. In
this case the Kuhn Tucker optimality conditions guarantee the existence of the solution to the
dual problem. Eriksson [11] used a Newton scheme for solving for the stationary values of the
dual functional. Standard local convergence results show that the iterates converge if the initial
value is close enough to the solution. In Section 2 we take advantage of the convexity of the dual
problem. We show that the dual problem also has a unique solution, and furthermore show that it
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is sufficiently well-behaved to admit globally convergent algorithms for its minimization, including
descent based and second order trust region methods. The readily available gradient and Hessian
of the dual problem are ideally suited for Levenberg—Marquardt type algorithms that utilize the
second order information.

However, in the context of the pharmacokinetic problems that motivated our approach, the
dual problem does not always have a finite solution. In fact, if the primal problem is not feasible,
then the objective functional of the dual problem is unbounded from below. The next section of
the paper addresses this situation.

In Section 3 an approach based on inequality constraints is introduced to relax the problem to
allow for an underlying sample space that supports distributions which do not exactly satisfy the
moment data. A new primal problem is formulated with a scalar quadratic inequality cosntraint,
and the dual formulation is again used to solve the problem. Although approaches of this type have
been applied to image reconstruction problems [13] to accommodate noise in data, an analysis of the
convergence properties of these algorithms has not been conducted to our knowledge. We note that
Powell [14] obtained a globally convergent algorithm for an interesting variant of this problem with
linear inequality constraints. However his approach was based on exploiting the orthogonality
properties of the Fourier matrix, which in turn required a one-to—one correspondence between
the number of variables and constraints. The pharmacokinetic applications that motivated our
work can easily lead to 10° or more primal variables, with relatively few constraints (e.g., less
than 100). We show that the dual to the scalar quadratic inequality problem is also a convex
programming problem, although this time with a single active bound constraint. The problem is
then converted into an unconstrained problem, and global convergence properties of the Levenberg—
Marquardt /trust region type algorithms are again proved.

The “curse of dimensionality” incurred by the number of parameter values motivates an “on
the fly” implementation of the algorithms which circumvents the need for storing the very large
matrices that appear. Section 4 briefly discusses this implementation.

Section 5 contains an example pharmacokinetic application involving developing discrete distri-
butions for the parameters of a three compartment model of the drug digoxin. Even this relatively
small model requires optimizing 100,000 variables. This particular problem is close to the limit of
what is possible on a PC or workstation.

2. Moment Matching Problem. Let a discrete density p be defined on a discrete set
I C R,

N .
pla) =Y pibla — ),

where 2 is the k-tuple,

The entropy of the density p is defined as
H(p)=— me (2.1)

The entropy of a distribution is a measure of its randomness. For example, without any
constraints (other than p;, > 0 and ) p;, = 1) it is easily seen that H is maximized by taking
p; = 1/N, and is minimized by choosing p, = 1 for some 1 < r < N with p; = 0 for all i # r.

The problem we address here is maximizing the entropy of the distribution with some addi-
tional constraints on the moments of the distribution. In the example above, the only constraint
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was derived from requiring p to be a probability density. Now suppose we are also given a set of
moments {m,., },; where m,.. denotes an r** moment

Mr; = Z iy o T, P(D).
i

The problem we pose is to determine a density p* with the property that

My, = Z ‘Tgnl U Tgn,p* (.])7 (22)
J

and

H(p*) = H(q) (2.3)
for any other density satisfying the moment constraints (2.2). To be precise about the constraints
implicitly imposed by requiring p* to be a density we have in addition to (2.2),

p; >0, forall i=1,...,N, (2.4a)

and

Zp;f =1. (2.4b)

Now we introduce the matrix 7" to represent the linear constraints (2.2) and (2.4b). To incorporate
(2.4b) we require the first row T' to consist of ones, i.e., T(1,5) = 1,5 = 1,..., N. Each constraint
of the form (2.2) corresponds to a row of T, say row r; + 1,

AT T O B N R R 1
The constraints (2.2), (2.4a), and (2.4b) can now be expressed as
Tp=m, m=[1 m5 p; >0
The maximum entropy optimization problem is formulated as
max H(p) subject to Tp=m, p;>0. (2.5)

P

This problem has, as we shall see, some nice features that make it very amenable to solution, even
for extremely large data sets.

The first observation in this regard is that —H is a strictly convex functional. This follows
from noting that d?f/dz? > 0 on = > 0 where f(z) is defined as f(z) = wlogz. Since —H is
the sum of such functions, it is strictly convex. Assuming that the problem (2.5) is feasible, the
constraint set is also convex since Cy = {p’ : Tp' = m} is affine and Cy = {p : p; > 0} is trivially
convex. Furthermore C; N Cy is compact since C7 NCy is clearly bounded (> p; = 1 together with
pi > 0), and Cy and C; are both closed ( C; = T~{m}). Therefore (2.5) is guaranteed to have a
solution. Also, because of strict convexity this solution is unique.

So far we have established that the primal problem (2.5) has a unique solution. This is still a
problem with constraints, however. We will next show how these constraints can be removed by
working with the dual to (2.5). We begin by introducing the Lagrangian

Lp,\p)=—H(p)— < \,Tp—m)>— < pu,p >,
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where A € R?, u € RN. Here d is the number of equality constraint, which equals one plus the
number of moment constraints. Because the constraints are regular (they are in fact linear), the
Kuhn—Tucker [9] necessary conditions for optimality are

V,L =0, (2.6a)
together with the constraints
Tp=m, p; >0, i=1,....N. (2.6¢)

And because the problem is convex, the K-T conditions above are also sufficient. Thus we can
assert that this system has a unique solution p*. With the condition that T has full rank we can
also assert that the optimal multipliers A*, u* are also unique. To see this, examine more closely
the vanishing of the gradient V,L:

VoL =-V,H-<T'\->—<p,-> 27
=< v, > =< TN ->— < ji,->. '
Thus V,, L =0 implies v = T*A + p where v has coordinates v; = 1 + logp;. From this we see that
pr > 0 for all i since otherwise the multipliers A, ;¢ cannot be finite. This implies that the Kuhn-
Tucker condition (2.6b) is p; = 0. Since V,, L = 0, taking exponentials yields the relationship

pi = exp{< e, T'N\* > —1}, (2.8)

where e; denotes the vector with a 1 in the it coordinate and zero elsewhere. Now it is also clear
that A* is unique because T has full rank and p* is unique. (Note that since T has full rank,
A1 # Ao implies T*A\; # T Xo. Thus for some index i, < e;,T*\; >#< ¢e;,T* X9 > . Hence, the

uniqueness of p* now implies that \* is unique.) This discussion is summarized in

Lemma 2.1. Suppose the primal problem (2.5) is feasible, and T has full rank. Then the primal
problem has a unique solution p* > 0, and the Kuhn—Tucker system of equations (2.6a)—(2.6¢) has
a unique solution.

Having established these facts we can move on to the dual problem. The dual result for the
convex problem (2.5) after the analysis above is that (p*, A*) solves the optimization problem

max L(p, A), (2.9a)
DA
subject to the constraint
VL =0. (2.90)

(Recall that the inequality constraint p; > 0 is inactive so that associated muliplier u is zero.)
Solving (2.9b) leads to relation (2.8) as established before. Next observe that

<\Tp>=<T'\p>

= <e . T'A>p;
i (2.10)

= Z < e, T\ > exp{< e;, T"\ > —1}.
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Now substituting (2.8) into (2.9a) and keeping (2.10) in mind gives

Lp.A) =) exp{<e;, T'A > —1}[< ¢;, T'A\ > —1]— < X\, Tp — 1 >

= —Zen:p{< ei, T'A > —1}+ < A\, > .

Writing A(A) = L(p, A) where p is given in (2.8), the dual problem (2.9) reduces to the unconstrained
problem

min h(\) = Zeﬂ:p{< ei, T'A > —11— < A,/ > . (2.11)

K

Note that not only have the constraints been removed from the problem, but in many cases the
dimensionality has also been reduced. This reduction can be very significant when the number of
support points of the density p (which is the cardinality of the set I') greatly exceeds the number
of moment constraints. Although this will always be the case in the moment matching problem
we solve, this condition also holds true for the image reconstruction problems generated from
interferometric imaging, for example.

In general we cannot expect the dual problem to be convex. However, this is the case here,
as we shall next establish. This claim is most easily verified by taking derivatives and showing
that the Hessian is nonnegative definite. We will see that the gradient and Hessian of h have very
simple forms.

First note that

oh
o = 2 T exp{D_Tiidj — 1} = ms. (2.12)
i j
From this it follows that
0%h
INON ZTMT% eXp{zj: Tjirj — 1} (2.13)

Recalling that
pi = expi{< e;, T'\ > —1},

we arrive at succint forms for the gradient and Hessian of h:
Vah=Tp—m, (2.14)

and
Vih=TXT, (2.15)

where X is the diagonal matrix with X; = p;. Thus V%\h is nonnegative definite, and h is
consequently convex. These simple forms for the gradient and Hessian were first derived in [11].

From (2.14) note that Vh vanishes precisely when the constraints from the primal problem
are satisfied. And since the solution to the primal problem is unique, we can show that the solution
to the dual problem must also be unique. To verify this, observe first from (2.8) and the assumption
that 7" has full rank, that p and A\ are in one-to—one correspondence. By convexity of the dual
problem, the K-T conditions are both necessary and sufficient. Hence, if (2.14) vanishes for two
values of A, say A1 and Ao, then the two associated densities, p; and ps, are both solutions to the
primal problem. By uniqueness p; = po. And because of the unique correspondence from (2.8), it
follows that A\; = Ay. Therefore we can state



Theorem 2.2. Under the hypotheses of Lemma 2.1, the dual problem (2.11) has a unique solution.

The next result has significance with respect to the implementation of algorithms for solving
for the minimum of A in (2.11).

Proposition 2.3. If Problem (2.5) is feasible, then the set
Lo ={A:h(X) < h(Xo)}

is bounded for any Ag.
Proof. Because (2.5) is feasible h(\) is bounded from below [9]. Thus the set

S={\: <Am> >0, <Te,A><0}

is empty. By Farkas’ lemma [10], there exist a; > 0 such that
m = j{:(ldrei.
i
So now we may write

h(A) =) exp{< Te;, A> =1} =) a; < Tej, A > . (2.16)

Let Ax be any sequence with |[Ax| — 0o, and let zy = Anx/|An|. Hence,

h(Av) = exp{|An| < Tes,zy > =1} — [An| D> oy < Tey, 2y > . (2.17)

Now zy has a convergent subsequence zy, — 2z* with |2*| = 1. Since z* % 0 and T has full rank,
the two sets of indices, I} = {i: < Te;,2* >> 0} and I_ ={i: < Te;,z* >< 0} cannot be be
simultaneously empty. Next define the functions h,

hy =Y erp{<Te,d>—1} =Y a; < Tei A >, (2.18)

i€l el

and note that h = hy + h_. From (2.17) and (2.18) it is clear that if I (resp. I_) is nonempty,
then
li;n hi(An,) =400 (resp. li;n h—(An,) = +00)

Hence L is bounded.///

This result together with the strict convexity of (2.11) implies global convergence for several
classes of algorithms. For example, from the form of the hessian in (2.15) it follows that VA is
uniformly continuous on Lg, thus establishing the classical Goldstein criteria for global conver-
gence for the class of descent algorithms with line search. The proposition also establishes global
convergence for a class of restricted stepsize second order methods.

However, it is generally not known a priori whether the initial problem is feasible. The next
section introduces a modification to insure that a feasible problem is always defined.

3. The Inequality Constrained Problem. In the pharmacokinetic applications that
motivated the problem formulation, it is seldom known a priori whether the primal problem is
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feasible. Typically the moment data is provided, but the underlying sample space is not. In this
case it is necessary to define the sample space. An obvious way to do this is simply to assume
a uniform grid for each random variable. This does not assure feasibility, and one alternative is
to relax the problem to allow for this possibility. We remark that similar approaches have been
implemented in image reconstruction problems where the constraint has the form

Txp—m=0,

where now  denotes (two—dimensional) convolution, p represents the source (which is of positive
intensity), and m represents the measured image. Typically the image is corrupted by noise and
the constraint is not satisfied, analogous to the moment matching problem [13, 14].

To circumvent this difficulty, an additional inequality constraint is introduced, converting (2.5)
into

mln —H(p qu log(p;), (3.1)

subject to the constraints

Tp—m+ N =0, (3.2)
Top — mg = 0, (3.3)
p >0, (3.4)
— NP >0, (3.5)

where () is a positive scalar chosen to make the problem feasible and N is a slack variable. Here
again Ty = [1---1] and mg = 1. Ty and mg may be chosen to normalize solutions in other
ways; in image reconstruction applications mg represents the total flux, for example. ) can be
determined from the quadratic programming problem defined by minimizing |Tp — m|? subject
to the constraints (3.3)—(3.4). Then any value of Q greater than the minimum solution yields a
feasible problem.

An alternative to this is to attempt to solve the equality constrained problem. By Farkas’
lemma, if the primal problem has no solution, then in the course of solving the dual problem, a
direction A\ will be determined along which the cost function becomes unbounded (h(\) — —o0).
As soon as this direction is found, the solution grows very rapidly. However, before this event
occurs, any Vh = Tx —m/ can be interpreted as a solution to a neighboring primal problem with
m' replacing m. Choosing () = |m — m’|? then leads to a feasible problem.

The new problem (3.1)—(3.5) no longer consists only of linear constraints because of the ap-
pearance of (3.5), but it is still convex. And for sufficiently large €2 it is feasible. If € is chosen too
large, the constraint (3.5) may no longer be active, in which case the uniform distribution solves
the problem.

We again look to the dual to solve the optimization problem. As before we begin by forming
the Lagrangian L(pa N7 )‘7 )‘Oa Ky MQ)a

L=—H(p)— <A\Tp—m+N>— <X, Top—mo > — < j1,p > —pua[Q — |[N|?. (3.6)

w=(E) 2-() e (2)

Then the Kuhn—Tucker conditions are

oL

8_p - 0, (38@)
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oL

oy =0 (3.80)
Hipi = 07 122 Z 07 (386)
pa(Q—|N?) =0, pg>0. (3.8d)

As before we can deduce that p; = 0, so that the first Kuhn—Tucker condition becomes
v=TT)\,, with components v; =1+ logp;. (3.9)

Assuming (3.5) is active and strict complementarity holds, (3.8b) implies

1
N=—2\ 3.10
5. (3.10)

Note that if (3.5) is not active or if strict complementarity does not hold, then ug = 0, and hence,
A = 0 so that the uniform distribution solves (3.1)—(3.5).

Now we consider the dual formulation. We shall assume that ug > 0 in what follows, since
the problem is trivial otherwise. The dual problem is

L L
Jnax L subject to g—p =0 and S_N =0. (3.11)
Using the relationship for N in (3.10) we find that
T AP
L=-> exp{<e; T/ Xe > —1}+ < Ae,me > “de paQ, g > 0. (3.12)
Q

Previously it was observed that when the primal problem was not feasible (i.e., no solution to
Tp = m with p > 0), then h(\) — —oo for some direction A where the dual function h is defined in
(2.11). We shall see shortly that the presence of the quadratic term |A|? mitigates this possibility
for ) sufficiently large.
Converting (3.12) to a minimization problem we have
. T A2
min L = Zexp{< e, T, Ae > —1}— < Aeyme > +4M—Q + 1o, pa > 0. (3.13)

One alternative to solving this comes from noting that V,,L = 0 implies

A
= —. 3.14
Hence, we might equivalently solve
min h(A) + V|, (3.15)
as an alternative to (3.13). But (3.15) is undesirable because | - | is not smooth at the origin, and

we will not pursue this possibility.
However, we note from (3.13) and (3.15) that

L, pi0) > h(Ae) + VAL
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Now let

o= |/\ir|1f1{| <AeyMe >0 < AeyTe; ><0 and < Ae,me >> 0}

Then for Q > o, it follows that infy_ h(\.)+vQ|A| > —o0, so that the dual problem has a solution.
However, since the constraints are not linear, solvability of the dual does not guarantee that the
primal problem is feasible. We will proceed on the assumption that (2 has been chosen large enough
so that the dual problem has a solution.

Theorem 3.1. The dual minimization problem (3.13) is a convex programming problem.

Proof. Recalling that N = A\/2uq, we have
Vo L=Tp-me+(° (3.16)
e e e N - .
Also, again using N = A\/2uq,

VoL = Q= ug|N|?. (3.17)

From these we easily develop the Hessian of L as

2
L
g)\Q =T"XT + D, where X =diag(py,...) D =diag(0,1/2uq,1/2uq...,1/2nq), (3.18)
0°L 0
- 1
OAeOpey <—N//m> ’ (3-19)
0L  2|N|?
Thus we have
L L
VQL — 11 12 >
<L21 Lo

where Ly is given by (3.18), L1z is given by (3.19), Loy = L1, and Loy is given by (3.20).
Next we will show that V2L is positive definite. We compute for a partitioned vector (af 3):

(o' B)V?L (g) =< Lija,a > +2 < Lo, a0 > +Loo 3. (3.21)

This quadratic form is minimized when
a=—L7'Lisp. (3.22)
Letting Q(3) denote the value of (3.21) with the relationship in (3.22), we obtain
Q(B) = Lawf® — 3% < LﬁlLlQ,Lm > . (3.23)

If T has full rank, then as before TXT7 > 0. Hence, for some € > 0, TXT" > €I and

el 0
L”><o D+d>
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Hence,

L (VeI 0
L << 0 (D+e])1>’

< LN N' ><

Therefore,

2
m“\fﬁ, where N/ = <J(\)f> . (324)
QT o

Recalling the definitions of Lo and Lo, it follows that Q(3) > 0, thus establishing that
V2L > 0 and that L is convex for ug > 0. Hence, the dual problem is also a convex programming
problem with the single constraint ug > 0. ///

The constraint po > 0 can be removed by the change of variables

o = exp(v), (3.25)

so that (3.13) becomes the unconstrained minimization problem

A2
r/\nin H(\.,v) where H(\v)=h(X)+ % exp(—v) + exp(v)§2. (3.26)
Computing VH we have
VaH=T.p—m.+ <](\)[> , (3.27)
and
AP
V.H = 4 exp(—v) + exp(v)Q2
2 (3.28)
A
=5 4 a0
dpiq

Comparing (3.27)-(3.28) with (3.16)—(3.17) we see that VH = 0 if and only if VL = 0. If pq is
nonzero (which is our working assumption to keep the problem nontrivial), then the vanishing of
VH is a sufficient condition for a global minimum.

Although we have eliminated the constraint pg > 0, we have lost some of the convexity of the
problem, as H is no longer convex. However, computing the Hessian of H we obtain

2
%;21 =T'XT+ D, X =diag(pi,...) D =diag(0,1/2uq,1/2uq...,1/2uq), (3.29a)
P H
e =N, (3.29b)
0*°H
T = po(IN|? +9Q). (3.29¢)

And, arguing as before in (3.22)—(3.25) we can show that a sufficient condition for V2H to be non-
negative definite is that [N|? < Q. Hence, VH = 0 satisfies the second order sufficient conditions
for a minimum.

From the discussion above, minimizing H is an effective means for solving (3.1)—(3.5). Having
the gradient and Hessian of H from (3.27)-(3.29), leads to algorithms having the same form
discussed in Section 2 for the equality constrained problem. To ensure global convergence, we next
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establish that the dual function H is bounded from below for appropriate values of €2, even when
the original primal problem (2.5) is not feasible.

Theorem 3.2. If the problem (3.1)—(3.5) is feasible with solution other than the uniform
distribution, there exists (A%, v*) such that the level set

L={(Ae,v): H(,v) < H\,v%)}

is bounded.
Proof. Again let

0:‘/\ir‘1f {|<Aeyme >1: <AeyTe; ><0 and < Ae,me >> 0},
e=1

Then for Q > ¢, it follows that infy, h(\e) + VQ|A| > —oco, and H is bounded from below since
H(Ae,v) > h(Ae) + VAL

If Q* leads to a feasible solution to (3.1)-(3.5), then Q* > o. Trivially if |\)| — oo, it follows from

the inequality above that H(AY,v) — +o0. The only possibility for L to be unbounded is then if

vV — —oo with A = 0. Thus we assume that )\, has the form

_ (o
= ()
Minimizing h(A.) over A, of the form above, we find that Ao = log(e/N). Hence,

Nlim H(Ae,vn) > h <>(\)0> with Ao = log(e/N).

Now for any unit vector ¥,

h((A(f) + ty) + t|TIy [V = h((’})‘))) +t < Vh,y > +t|Ily[VQ~,

where II denotes the projection IT : (uy,---upr) — (ug,---upr). But recall that
Vh =Tp—me,

with
pi = exp{< e;, T" </})0> > —1}
—1/N.

If |Tp — me| < VO the uniform distribution optimizes the problem. If not, by choosing y =
—(Tp — m,) it follows that for e sufficiently small

N—oo 0

lim H(Ae,vn) > h(<>\0> + ey) + €ly|vVQ*.
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And we may choose

|Tp - m'e|

v

A* = <>E)O> —€(Tp—me), v*=log(

in the statement of the theorem.///

The significance of this result is that it establishes convergence of gradient and trust region
algorithms for the dual problem whenever the primal problem (3.1)—(3.5) is feasible.

Another way of obtaining solutions when the underlying sample is not defined is to construct
a sample space to guarantee that the moment constraints can be satisfied. This construction of
problems in which the means and variances are prescribed was developed in [12].

4. Algorithms. The algorithms that have been implemented are based on a modification of
the fundamental Newton iteration. It will be useful to write here the Newton iteration for problem
(2.11). For brevity we shall write g = V h and G = V3h. Using a Newton scheme to solve for the
necessary (and sufficient) condition g = 0 leads to the iteration

AEHD = \B) G (g), (4.1)

where g, = g(A®)) and G}, = G(A®). (Observe that G~' can fail to exist only if R(T%) N N(X)
is not empty. So for example G will be invertible if p; # 0 for all i.) Returning to the definition of
the associated iterate pgk’) defined from (2.13) and (2.8) we have

P =exp{d 1A — 1)
J

= (T - G - 1)

el ! B o (4.2)
=p;~ exp{ ZleGk:—l(gkfl)}

J
=pf Texp{— Y T;G, 2 [Tp* Y — ]}
7

Note that although we are solving the dual problem, the update is written entirely in terms of the
primal variables. From (2.14) and (2.15) the gradient and Hessian are also developed in terms of
the primal variables.

The Newton iteration (4.1)—(4.2) was derived in [11]. Note that convergence is achieved
when Tp* = m, in accordance with Theorem 2.2 (cf (2.14)). The Newton iteration converges
quadratically so long as the initial value is sufficiently close to the solution. The trust region
modification of the Newton algorithm coupled with Proposition 2.3 insures global convergence
[9]. A Levenberg-Marquardt variation of the trust region algorithm has been implemented in our
pharmacokinetic applications.

The iteration for solving the inequality constrained problem (3.1)—(3.5) is based on the same
iteration as (4.1)—(4.2) above, but using the gradient and Hessian developed in (3.27)—(3.29).

The main bottleneck in implementing these algorithms arises from computing the matrix

product
G=TXT". (4.3)

Here, T' = [T;;] is a “fat” matrix of real numbers of size m xn with m < n, and X = diag{py, ..., p»}
is a diagonal matrix of real numbers of size nxn. The resulting matrix has size mxm, corresponding
to the total number of constraints in the problem and can be considered as a relatively small matrix.
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The key computational issue is how to handle the constraint matrix T. Let ¢ be the number
of problem parameters and g be the number of computational grid points for each parameter.
The number n of columns of T is equal to g?, while the number m of rows of T is the number of
constraints prescribed for the problem. The development in the sequel focusses on the case in which
the means and cross correlations of the parameters have been defined, leading to m = (¢*+¢q)/2+1.
Other moment constraints can be handled similarly.

Ideally, elements of the constraint matrix are calculated once and stored in an array so that
they can be used subsequently without re-calculation. However, due to the size of the matrix,
storing its elements requires a substantial amount of memory. Table 4.1 below lists the memory
requirement M (in MegaBytes) for the matrix 7" for examples of different numbers of parameters.
M is calculated according to the following formula,

M =sxn+m/10° = s % g7+ m/10°

where s is the number of bytes that each floating point number takes. In the two tables, s is
assumed to be 4 and g is 10.

Clearly, as the number of parameters ¢ becomes greater than 6, the memory requirement
M alone exceeds capabilities that a single state-of-the-art PC or workstation can offer. Indeed,
7000 to 20000 PC nodes are needed to make up the required memory space for the q = 10 case.
Therefore, generating elements of the matrix on-the-fly is critical to solving problems having more
than 6 parameters.

In the table below

e g= number of parameters

e m = (q°> +q)/2+ q+ 1 is the number of rows
e n = g7 is the number of columns

e M = megaBytes of memory

q 4 3] 6 7 8 9 10

m 5) 6 7 8 9 10 11

n 104 105 106 107 108 109 1019
M 0.36 4.4 52 600 6,800 76,000 840,000

Table 4.1. Memory requirements for constraint matrix

The matrix 7" depends on the grid sampled in the parameter space. For each k =0,1,...,q—1,
let X = {29, ..., mz_l} C R be the set of supporting points (real numbers) for the k-th parameter.
The grid formed by these sets X}, is

Q=Xyx X1 x---x X401 CRY,
and the grid points in Q = {z%,...,2"71} can be enumerated as
J1 Jq 1)
7

J— (0
v = (z, ot wyt

where j =0,1,...,n — 1, and (jo, ..., jq—1) is the g-dimensional representation of j with the base g;
that is,
J=Jo+iig+ -+ je—19%"
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It is very important to note that the enumeration above establishes a one-to-one relationship
between any grid point and its parameter coordinates. With this relationship, the constraint
matrix 71" of size m x n can be defined as follows.

ekori=0and j=0,1,....n—1,
T(i,j)=1.
ekori=0,...,q—1and j=0,1,....n — 1,
T(i+1,5) =l

eFori=0,....q(¢g—1)/2—1and j=0,1,...,n -1,

T(i+2q+1,) = alioal

io Vi1 *

Here, for each i = 0,1,...,q(q —1)/2 — 1, (ig,41) with ig > 4; is the 2-dimensional representation of
1 with base ¢; that is,
i =io i1 *q.

In this case, the number of rows is m =g (¢q—1)/24+2*xq+1=q*x(qg+1)/2+q+ 1.
For example, when ¢ = 2, g = 3 and

Xo = {T87T(1)7T(2)}
Xy = {T(l)aTiT%}v

the grid generated from Xy and X is

Q= {'T/O = (TgaT(l))aTl = (Til)aT(l))vTQ = (T(QJvT(lJ)a
P = (o) 0t = (ndad), 2 = (a3,

2 = (@§,a2),27 = (h,02),% = (a3,23).)

The matrix T has the form

1 1 1 1 1 1 1 1 1

0 1 2 0 1 2 0 1 2
T — Ty 7 Ty iy Ty Ty iy 7 7
= 0.0 dod .2 0.0 .1 2.2 0.0 1.1 9202

2 1

0.0 1.0 2.0 ,0.1 ,1,1 2.1 ,0.2 1.2 2.2
ToT] TGT]  TET] T XgT]  TETp  TeT]  ToTT  TETT

o

A simple algorithm for computing the entries T'(, j) is a straightforward implementation of the
definition above. The problem with this approach is its inefficiency when it is required to compute
all the entries of the matrix. This is because each entry needs to perform rather time-consuming
decompositions to compute j’s coordinates (jo, ..., jq—1) and i’s coordinates (ig,i1).

When the constraint matrix is used in the maximum entropy computation, all of its entries
will be used in a row-by-row manner. For example, when computing the multiplication

G=TXT"

14



where X is a diagonal matrix, a double loop is used. Because computing j’s coordinates (jo, ..., jq—1)
is time-consuming, it is very desirable to compute T'(s,j) and T'(¢,j) incrementally.

A careful examination on the definition of the constraint matrix 7" and an incremental relation
of (j +1); with j; leads to an efficient incremental algorithm for generating the entries of 7' [17].

Computing the Diagonal Matrix D. Let y be a vector of real numbers of length m, and
let b = Ty be the product vector of 77 and y. Then, the definition of the diagonal entries of the
diagonal matrix D is

Dk:k, = eXp{bk - 1}

To compute the b,’s in an incremental manner, it is necessary to enumerate entries of the
matrix T column-wise, as
m
by = § Tiry:-
i=1

An algorithm for accomplishing this task is found in [17].
Since it is symmetric, the matrix G can be computed from the following code.
for s = 0 to m-1 do

for t = s+1 to m-1 do

B(s, t) = 0.0

for j = 0 to n-1 do
G(s, t) = T(s, J)*X(, J)*T(t, ))

end do
G(t,8)=G(s,t)

end do

end do

5. Examples. The following examples illustrate the maximum entropy/moment matching
method developed herein. The initial data for these problems are contained in the table below.

The parameters are derived from presumably normally distributed population data of the drug
digoxin [15, 16].

Parameter Number Range Mean Std. Dev
A% 0—5.0 1.57 3.14e-1
Ks 0—1.5e-3 4.51e-4 1.00e-4
Kcp 0—1.5 5.60e-1 3.26e-1
Kpc 0 —5.0e-1 1.50e-1 3.00e-2
Ka 0—1.5 6.09e-1 1.22e-1

Table 5.1. Digoxin Population Data
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The pharmacokinetic model for digoxin is shown in the block diagram below.

Kpc j Kcp

Ka

| Kel
Fig. 5.1 Digoxin Pharmacokinetic Model

The parameters are V, which is the apparent volume of distribution of the central compart-

ment, Kcp the rate constant from the central to peripheral compartment, Kpc the rate constant

from the peripheral to central compartment, Ka the absorption rate constant, and Ks, which is the

linear term in the renal component of the elimination rate constant Kel; Kel = Kint + Ks« CCr

(CCr=creatinine clearance). This three compartment model corresponds to the linear ordinary
differential equation:

i = Ar + Bu,
where
—(Kel+ Kcp) Kpe Ka 0
A= Kep —Kpc 0 , B=10
0 0 —Ka 1

The therapeutic objective is often to maintain a specified serum level of the drug, z, in the central
compartment by administration of the drug via the control term u. This objective is defined as

z=[1/V 0 0]z

Each possible value of the 5-tuple of parameters defines a model. The probability distribution
defines the likelihood of that model. In the multiple model approach it is assumed that one of these
models describes the patient. The maximum entropy algorithm is used to initialize the probability
distribution based on the population pharmacokinetic model existing at the beginning of therapy.

A uniform grid consisting of 10 points per variable was used to define the underlying sample
space. The primal problem in this case consisted of 10° variables and 11 constraints using the means
and variances from Table 5.1. The algorithm converged for values of Q2 = 106 and Q = 10719 (cf.
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(3.5)) and did so in fewer than 25 iterations for each of these values of ). The figures below show
the convergence history. Note how the convergence in each of these examples is initially linear, but
ultimately becomes quadratic, as predicted from theory [9].

-12 | |

1 1 10' 1 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Iteration Number Iteration Number

Fig. 5.2: Error Convergence: Q= 107%(left) Q = 10710 (right)

The comparison between the a priori estimates and the moments obtained in the distribution
generated by the maximum entropy method is given in the table below. The first five rows contain

the mean values of the parameters V, Ks, Kcp, Kpc, and Ka, respectively, while the last five rows
contain the values of their second moments.

Table 5.2 Moment Comparison

original moment estimated moment 2=1.0e-06 estimated moment 2=1.0e-10
1.5714e4-00 1.5713e+00 1.5714
4.5100e-04 (.4362e-04 1.6768e-04
5.6000e-01 5.5964e-01 5.6000e-01
1.5000e-01 1.4952¢-01 1.5000e-01
6.0930e-01 6.0897e-01 6.0930e-01
2.5681e+4-00 2.5681e4-00 2.5681e4-00
2.1340e-07 7.7982¢-07 3.9542¢-07
3.2614e-01 3.2646e-01 3.2614e-01
2.3400e-02 2.54004e-02 2.3407e-02
3.8611e-01 3.8638e-01 3.8611e-01
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The errors in the final moments are within the bounds defined by €); which would yield
maximum errors on the order of 1073 for each moment when €2 =1.0e-06, and errors on the order
of 107° when Q =1.0e-10. Of course it would be wise to scale all of the variables to approximately
unity to achieve a more uniform distribution of error. The histories of the entropy values as a
function of the iteration number is shown for these two solutions in the figures below. Note that
the final entropy is greater, as expected, when € is larger.

Entropy
Entropy

5 I I I I 5 I I I I
0 5 10 15 20 25 0 5 10 15 20 25
Iteration Number Iteration Number

Fig. 5.3: Convergence of Entropy: Q@ = 1075 (left) Q@ = 10719 (right)

6. Concluding Remarks. Maximum entropy/moment matching methods provide a pow-
erful means for constructing discrete probability distributions from continuous parametric data.
This construction has important applications to pharmacokinetic control problems that rely on
discrete probability distributions for their implementation such as multiple model adaptive con-
trollers [1]. Although the algorithms developed in this paper were targeted for this application,
they are generally applicable to other entropy maximization problems with linear constraints as
well, such as those that arise in image reconstruction.

Algorithms based on the theory in Sections 2-3 have been implemented in software programs
[12]. The user can select either the equality or inequality constrained options. For the equality
constrained option, the user may either define the sample space, or the sample space can be
automatically generated via a method in [12] which guarantees feasibility of the problem. If the
user wishes to define the sample space, the inequality constrained problem is a better selection
of algorithm, since it is generally not known a priori whether a solution within a prescribed
tolerance can be attained for the equality constrained problem. The software implementation of
the inequality constrained algorithm adjusts the value of €2 in (3.5) via a bisection algorithm until
a feasible problem is formulated. These algorithms has been successfully applied to problems with
as many as 100,000 primal variables, as demonstrated in Section 5.

Current work focuses on extending these programs so that they can accommodate eight or
more parameter problems with 10® or greater primal variables. The cpu times required to find the
maximum entropy distribution for the 5 parameter problem presented in Section 5 were typically
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on the order of 500 seconds on a Sun Ultra Sparc 1 workstation. Larger problems are prohibitive
on workstations, and this motivated the methods described in Section 4 for reducing memory
requirements and improving execution times. Further speedup is anticipated by parallelizing the
matrix computations in the implementation of the algorithms.
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